오늘 도착한 mini 2D lidar입니다. 가격은 $12.50 + $5 shipping 인데, 하루만에 실험에 성공했습니다.
옛날에 쓰던 라이다와 크기를 비교하니 아주 확연히 다르네요. 이 정도 크기라면 드론에 직접 올리는 것도 가능해 보입니다.
 

 

 

깃헙에 찾은 샘플 테스팅 코드 : https://github.com/halac123b/Visualize-data-from-Lidar-LD19_Matplotlib-Python

 

GitHub - halac123b/Visualize-data-from-Lidar-LD19_Matplotlib-Python

Contribute to halac123b/Visualize-data-from-Lidar-LD19_Matplotlib-Python development by creating an account on GitHub.

github.com

문제는 첫 실험 코딩이 matplotlib를 사용해서 엄청 느리기 때문에 PyQtGraph 라이브러리로 바꿔서 코딩해야 할 듯 합니다.

 


이건 나의 실험 케이스 :

   Platform : Orange Pi 5, on UART #0 ( /dev/ttyS0 ) @ 230400 bps.

     Speed control : PWM1_M2, pin # 26, which uses /sys/class/pwm/pwmchip0/

        Then use the following command to make pwm1 output a 50Hz square wave (please
        switch to the root user first, and then execute the following command)
        root@o5bot:~# echo 0 > /sys/class/pwm/pwmchip0/export
        root@o5bot:~# echo 20000000 > /sys/class/pwm/pwmchip0/pwm0/period
        root@o5bot:~# echo 1000000 > /sys/class/pwm/pwmchip0/pwm0/duty_cycle
        root@o5bot:~# echo 1 > /sys/class/pwm/pwmchip0/pwm0/enable

 


Lazarus IDE를 사용해서 Object Pascal로 프로그래밍 하기. 

(사용 라이브러리 : BGRABitmap )

 

이 기체는 6 TOPS의 속도의 NPU를 장착하고 있어서 인공지능 기능이 가능합니다.

가령 stereo camera로부터 추출해 내는 3D Depth와 YOLOv8이 가능합니다.

 

stereo camera로부터 추출해 내는 3D Depth (CPU의 10%사용)
YOLOv5로 사물인식 영상 (NPU의 33%사용)

 

 

 

'M.A.R. (Machine of Attack & Return)' 카테고리의 다른 글

전체 계획의 간략한 도면  (0) 2023.10.03

만들다 보니 지금 드론 자체의 무게만 해도 330g 짜리 배터리까지 합치면 거의 1kg이 넘어간다.

어쩌면 아마도 지금 달아놓은 모터로는 뜨지도 못할 가능성까지 있다.

거기에 지금 필요하다고 생각되는 Payload를 2.5kg으로 추가로 잡는다면 드론 모터부터 바꿔야 할 지 모른다.

그래서 모터 찾는 방법들을 찾아보았다.

넉넉잡고 드론까지 합쳐서 4kg의 Load를 날릴 수 있는 모터를 찾아야겠다.

https://robu.in/selecting-quadcopter-motor-a-detailed-guide-2021/

https://www.alibaba.com/product-detail/MOTORS-big-thrust-brushless-drone-OEM_1600799748053.html

 

Motors Big Thrust Brushless Drone Oem T-motor Aircraft 10kg Payload Motor - Buy Buy 24v Dc Motor,Oem T-motor,Brushless Dc Motor

Motors Big Thrust Brushless Drone Oem T-motor Aircraft 10kg Payload Motor , Find Complete Details about Motors Big Thrust Brushless Drone Oem T-motor Aircraft 10kg Payload Motor,Buy 24v Dc Motor,Oem T-motor,Brushless Dc Motor Price 10 Volt Medical Bldc Dc

www.alibaba.com

https://www.aliexpress.us/item/3256805045951351.html?spm=a2g0o.order_list.order_list_main.5.14af1802RRDMP2&gatewayAdapt=glo2usa 

 

https://www.aliexpress.us/item/3256805045951351.html?gatewayAdapt=glo2usa&spm=a2g0o.order_list.order_list_main.5.14af1802RRDMP2

 

www.aliexpress.us

 

Orange Pi 5에서 모터와 기타 단순 관리용 서브모듈로 사용하는 Arduino Nano와의 시리얼 통신용 코드.

이 방식은 아래와 같이 형태의 4글자 명령어와 최대 4개의 파라메터를 함께 보낼 수 있는 방식이다. 기체의 두뇌인 Orange Pi 5에서 온갖 명령어를 보내서 단순 작업들을 아두이노 나노에게 실행시키는 방법이다.
<ESPC:3,4,-29334,4>
<ESCT:0>

 

Parses.h

#define BUFFER_SIZE 50

int P2B_NEWLINE  = 11; // < -- Beginning of Command to Remote Control that controls R/C Car
int P2B_COM_TYPE = 12; // 0..9 -- First 2 letters following "<"
                       // Total Command Types : 10 x 10 = 100
int P2B_DATA     = 12; // Data section
int P2B_ENDING   = 13; // > -- End of Message Signal

int P2B_STAT_NONE = 1; // Do nothing until '<' has received
int P2B_STAT_CMD  = 2; // Accepting Command
int P2B_STAT_DATA = 3; // Accepting Command data
int P2B_STAT_END  = 4; // '>' has receieve, it is the end of   command;

// PI to Nano command string
char p2b_command[5];
char p2b_data[BUFFER_SIZE];
int  p2b_paramcount = 0;
int  p2b_status = 0;

int i = 0; // dumb int
int j = 0; // dumb int
int k = 0; // dumb int
int n = 0; // dumb int
int lp =0; // dumb last position of input command string

int r = 0; // Simple Counter to replace delay() in the main loop

String s;   // Temporary string for general purpose
String rs; 
String cmd; // used on ExecuteLogicalCommand() 

boolean debugSerial = true;
boolean ContionousMove = true;  

char    inputString[200];        // a string to hold incoming data
boolean stringComplete = false;  // whether the string is complete
char    inChar;
String  tempStr;
char    buffer[12]; // buffer used for itoa  (int to string conversion)
int     inlen = 0;  // Length of inputString
char    RemoteString[50];    
// value from PC Command (integer params 1 .. 4 max) 
int     paramcount = 0; // How many params in input String
int     param1 = -1;  // value from PC Command (Param 1)
int     param2 = -1;  // value from PC Command (Param 2)
int     param3 = -1;  // value from PC Command (Param 3)
int     param4 = -1;  // value from PC Command (Param 4)

int tempVal = 0;  
int nPos = 0;
int sign = 1;  // 1 = plus, -1 = minus

float fparam1 = 0.0; 
float fparam2 = 0.0; 
float fparam3 = 0.0; 
float fparam4 = 0.0; 

boolean SecondParam = false;   // Now gettign second parameter (after ,)


// NEW PINS 18 = cam
const int CAMPin = 5;// the number of the LED pin

int freq = 5000;
int resolution = 8;

int dist = 0;

int StartingSpeed = 0; // 0 - 255 (8 bit)

int targetHeight = 0;
int msAi = 0;  
int msBi = 0;
int msCi = 0;
int msDi = 0;
int maxSpeed = 50;

int height = 0;
int targetLR = 0;  // Target Left/Right
int targetFB = 0;  // Target Forward / Backward
int targetTN = 0;  // Target Turn (+ CW, - CCW)

boolean mStop      = false; // MS, Stop Motors
boolean mGoInAngle = false; // MG, Set Motor Speeds and Directions

boolean contGetAll = false; // 
boolean AutoBalancing = false;
boolean NoOffset = false;

////////////////////////////////////////////////////////////////

void ClearCommand() { 
   p2b_command[0] = 0;  // null
   for (int i=0; i <= 49; i++){
      p2b_data[i] = 0;  // null
   }
   
   // set as none, 0 could be value
   param1 = -1;  // 
   param2 = -1;  // 
   param3 = -1;  // 
   param4 = -1;  // 

   SecondParam = false;
}

void ClearRemoteString() {
   for (i=0;i<=49;i++) {
      RemoteString[i] = 0;
   };
}

void ClearParamsAndInputstring(){
   // clear the string:
   for (i=0;i<=49;i++) {
      inputString[i] = 0;
   };
   i = 0;
   j = 0;

   paramcount = 0; // How many params in input String
   param1 = -1; 
   param2 = -1; 
   param3 = -1; 
   param4 = -1; 
   
   fparam1 = 0.0; 
   fparam2 = 0.0; 
   fparam3 = 0.0; 
   fparam4 = 0.0;
      
   stringComplete = false;
}

 

MAR01AR.ino

/*  This is written by Henry Kim, as a M.A.R. (Machine of Attack & Return)
   Currently testing level @ Oct. 1, 2023 
   
   3 ESC for Propellers
      - Center Tail Propeller
      - Left Wing Propeller
      - Right Wing Propeller
   3 Servo 메인 모터 180도 회전
      - for 180 degree rotation of 3 Propeller Motors
   10 LED
   1 A/D Battery Level Monitor
   1 A/D Light Sensor
   3 A/D Sound Sensor  
   1 A/D Temperature Sensor   
*/

#include <Servo.h>
#include "Parses.h"

// ---------------------------------------------------------------------------
// Customize here pulse lengths as needed
#define MIN_PULSE_LENGTH 1000 // Minimum pulse length in µs  (1 ms : min speed)
#define MAX_PULSE_LENGTH 2000 // Maximum pulse length in µs  (2 ms : max speed)

// ---------------------------------------------------------------------------
Servo escLeft1, escRight2, escCenter3;
Servo motLeft4, motRight5, motCenter6;

// ---------------------------------------------------------------------------

void setup() {   
   ClearCommand();
   
   Serial.begin(115200);
   Serial.println("#MAR-NANO>");

   // 3 main ESC for Props
   escLeft1.attach(4, MIN_PULSE_LENGTH, MAX_PULSE_LENGTH);
   escRight2.attach(5, MIN_PULSE_LENGTH, MAX_PULSE_LENGTH);
   escCenter3.attach(6, MIN_PULSE_LENGTH, MAX_PULSE_LENGTH);
   
   // Servos - Change angles of Prop motors
   motLeft4.attach(7);
   motRight5.attach(8);
   motCenter6.attach(9);

   // Prevent motor run at the start
   stopAllProps();  // set in MIN_PULSE_LENGTH
   
   // Servos heading top initially
   basePosition4Servos();  // Heading Top
   
}

void loop() {
   r++;   // 
   if (r > 300000) { r = 0; }   // Reset r if it is too large 
   if ((r % 20000) == 0) {      // Do some sensor reading
      //
   }
   
   while (Serial.available()) {
      inChar = (char)Serial.read(); 
      // get the new byte:
      //Serial.print(inChar);  // for debut
      // add it to the inputString:
      inputString[i] = inChar;
      i++;
      
      // if the incoming character is a newline, set a flag
      if (inChar == '<') {
         p2b_status = P2B_STAT_CMD;
         ClearCommand();
         j = i-1;         

      } else if (inChar == '>') {  // so the main loop can do something about it:

         p2b_command[0] = inputString[j+1]; // Get Command Character
         p2b_command[1] = inputString[j+2]; // Get Command Character
         p2b_command[2] = inputString[j+3]; // Get Command Character
         p2b_command[3] = inputString[j+4]; // Get Command Character
                                            // O : Orientation
                                            // D : Distance
         p2b_paramcount = int(inputString[j+6])-48; // take out 0
            
         j = j + 8;  // now j is pointing param starting position 
         if (p2b_paramcount > 0) {
            tempVal = 0; 
            nPos = 0;
            sign = 1;  // 1 = plus, -1 = minus
            k = 1;
            for (n=j;n<=lp+1;n++){
               // end of param 
               if ((inputString[n] == ',') or (inputString[n] == '>')){  
                  if (k == 1){
                     param1 = tempVal * sign;
                  }
                  if (k == 2){
                     param2 = tempVal * sign;
                  }
                  if (k == 3){
                     param3 = tempVal * sign;
                  }
                  if (k == 4){
                     param4 = tempVal * sign;
                  }
                  tempVal = 0; 
                  k++;  // Param No.
                  nPos = 0;
                  sign = 1;  // 1 = plus, -1 = minus
               } else {
                  if (inputString[n] == '-'){
                     sign = -1;
                  } else {
                     nPos++; 
                     if (nPos == 1) {
                        tempVal = (byte(inputString[n]) - 48); 
                     } else {
                        tempVal = tempVal * 10 + (byte(inputString[n]) - 48); 
                     }
                  }
               }
            }
         } // end of if command is for this Machine
         
         Serial.println("ESCT TEST 00"); 
         ExecuteLogicalCommand();   
         
         i = 100;  // refresh counter
         stringComplete = true;
         p2b_status = P2B_STAT_NONE;
            
      } else {
         lp = i-1;  // set last position on each entry;
      }
   }  /* while (Serial.available()) { */  
   if (stringComplete) {  
      uPrint();  // Return for debug
      ClearParamsAndInputstring(); 
   }
                    
}

void ExecuteLogicalCommand() {
   cmd = (char)p2b_command[0]+(char)p2b_command[1]+(char)p2b_command[2]+(char)p2b_command[3];
          
   if (cmd == "ESCT"){  // Test ESC for Prop Motors
      testESC(); 
   };
   if (cmd == "SRVT"){  // Test All Servos
      testServos();
   }

}

void basePosition4Servos(){
   // Servos heading top initially
   motLeft4.write(180);    // Heading Top
   motRight5.write(180);   // Heading Top
   motCenter6.write(180);  // Heading Top
}

void testServos()  // 3 Servos : escLeft1, escRight2, escCenter3
{
   // Heading top to bottom
   for (int i = 0; i <= 180; i += 10) {
      motLeft4.write(180-i);
      motRight5.write(180-i);
      motCenter6.write(180-i);      
      delay(100);
   // Heading bottom to top
   for (int i = 0; i <= 180; i += 10) {
      motLeft4.write(i);
      motRight5.write(i);
      motCenter6.write(i);      
      delay(100);
   }
   basePosition4Servos();
}

void stopAllProps() {
   escLeft1.writeMicroseconds(MIN_PULSE_LENGTH);
   escRight2.writeMicroseconds(MIN_PULSE_LENGTH);
   escCenter3.writeMicroseconds(MIN_PULSE_LENGTH);
}

void testESC()  // 3 ESC Test : escLeft1, escRight2, escCenter3
{
   for (int i = MIN_PULSE_LENGTH; i <= MAX_PULSE_LENGTH-700; i += 40) {
      // Serial.print("Pulse length = ");
      // Serial.println(i);
      escLeft1.writeMicroseconds(i);
      escRight2.writeMicroseconds(i);
      escCenter3.writeMicroseconds(i);      
      delay(200);
   }   
   stopAllProps();
}

 

 

 

초벌.  만들어 가면서 계속 수정 중임.

 

=========================

 

===================================================

현재 기초 기능 코딩용 기체. 

(날개도 180도 움직이지 않는 고정형, 날개를 움직이는 서보는 그냥 따로 옆에 붙여서 컨트롤 실험만 한 후에 나중에 최종 프레임을 디자인 할 계획임.)

 

Objective : 

   1. Setting for headless mode (No monitor, mouse, keyboard) - remote access via TightVNCServer

   2. Minimal attachment to the board : power, webcam and network cable (switch to wifi dongle later).

   3. GPIO setting for motor control

   4. Serial communication with ESP32 (ESP32 will handle Lidar, A/D, DAC)

 

===========================================================

1. Download server image from Odroid wiki site.

2. For now, you cannot use SSH log-in.  So, attach monitor, keyboard, mouse.

3. After login, 

sudo passwd root
  (enter default password "odroid" for sudo)
  (for new password, "111" and confirm) - enter extremely easy password.  Save yourself from password hell.
  
sudo passwd odroid
  (same thing.  change all password to "111")

// This steps are needed for NPU to work
sudo apt update
sudo apt upgrade

sudo apt-get install nano

sudo nano /etc/ssh/sshd_config
// Allow enable SSH login option, so "root" can be remotely log-in
# Authentication:
#LoginGraceTime 2m
PermitRootLogin yes   (<== change right here)
#StrictModes yes
#MaxAuthTries 6
#MaxSessions 10

sudo reboot

// After reboot, make sure to log-in as root via SSH.  
// The user id "odroid" will not be used anymore.

// ************  IP RESERVATION with Router *************

// Try to reserve IP address for Odroid-M1 on your home or office router's configuration.

// If this device's MAC address is reserved with fixed local IP address, then this device will always have

// same local IP address everytime it boot-up.   In my case, I have set its IP to 192.168.1.96

 

// now log-in from PC using SSH as root, 111  (My case, I use Snowflake on Ubuntu.  With Snowflake, you can have file manager between PC & bot, text editor that can edit files on bot from PC, and endless number of terminals.)

// Install LXDE 

apt-get install lxde

  - during setting, it will as for gdm or lightdm, choose lightdm.

apt-get install libx11-dev libgtk2.0-dev libcairo2-dev libpango1.0-dev libxtst-dev libgdk-pixbuf2.0-dev libatk1.0-dev libghc-x11-dev
apt-get install xorg tango-icon-theme gnome-icon-theme

 

// Install Tight VNC Server

apt-get install tightvncserver thunar-volman udisks2 gvfs

 

// For NPU programming

apt install g++

apt install cmake

 

// Pre-install For Lazarus IDE

apt install gdb

apt-get install subversion

 

// For Webcam

apt-get install v4l-utils

apt-get install guvcview

apt-get install libgstreamer1.0-dev libgstreamer-plugins-base1.0-dev libgstreamer-plugins-bad1.0-dev gstreamer1.0-plugins-base gstreamer1.0-plugins-good gstreamer1.0-plugins-bad gstreamer1.0-plugins-ugly gstreamer1.0-libav gstreamer1.0-doc gstreamer1.0-tools gstreamer1.0-x gstreamer1.0-alsa gstreamer1.0-gl gstreamer1.0-gtk3 gstreamer1.0-qt5 gstreamer1.0-pulseaudio

 

// For general programming

apt-get install -y git

 

// For general monitoring

apt-get install htop

 

// GPIO library : How to download wiringOP
apt install odroid-wiringpi
apt install wiringpi-examples
gpio readall
gpio readall -a

 

// Disable auto hibernate.   It is extremely annoying if it keeps on hibernating and never wakes up.

systemctl mask sleep.target suspend.target hibernate.target hybrid-sleep.target

 

ip addr   <== to find out the local IP address of  Odroid-M1.  In my case, I have fixed its IP to 192.168.1.96 at router.

 

// Remote Log-in via VNC with Remmina Remote Desktop

tightvncserver

  - then it will ask for vnc remote password two times.   Enter "111" for simplicity

  - Would you like to enter a view-only password (y/n)?  <= Important.  You don't want view-only.

 

// Using Remmina from Ubuntu PC, log-in with VNC with the local IP address + ":1" at the end.

// Once you log-in via VNC, then now, you are READY! to run it in headless mode and develop Robot.

VNC remote log-in

 

I love this style, similar to old Windows 95.&nbsp; &nbsp; Perform USB webcam test with guvcview

===============================================================

NPU CAM demo (I have done it with UBS webcam.)

For this demo, you will have to follow the instruction from wiki site's RKNPU  project.

Important : If server image is used instead of desktop image, OpenCV must be installed from source in order to make this demo work.   

Otherwise, ./build-linux.sh step will terminate with error.

Refer this site for installing OpenCV from source - (Method 2) :  vitux.com/opencv_ubuntu/

 

좋은 출처 : https://www.electronicwings.com/raspberry-pi/mpu6050-accelerometergyroscope-interfacing-with-raspberry-pi

 

MPU6050 (Accelerometer+Gyroscope) Interfacing with Raspberry Pi |..

MPU6050 is a combination of 3-axis Gyroscope, 3-axis Accelerometer and Temperature sensor with on-board Digital Motion Processor (DMP). It is used in mobile devices, motion enabled games, 3D mice, Gesture (motion command) technology etc.

www.electronicwings.com

MPU6050 Code for Raspberry Pi using Python 

'''
        Read Gyro and Accelerometer by Interfacing Raspberry Pi with MPU6050 using Python
	http://www.electronicwings.com
'''
import smbus				#import SMBus module of I2C
from time import sleep        #import

#some MPU6050 Registers and their Address
PWR_MGMT_1   = 0x6B
SMPLRT_DIV   = 0x19
CONFIG       = 0x1A
GYRO_CONFIG  = 0x1B
INT_ENABLE   = 0x38
ACCEL_XOUT_H = 0x3B
ACCEL_YOUT_H = 0x3D
ACCEL_ZOUT_H = 0x3F
GYRO_XOUT_H  = 0x43
GYRO_YOUT_H  = 0x45
GYRO_ZOUT_H  = 0x47


def MPU_Init():
	#write to sample rate register
	bus.write_byte_data(Device_Address, SMPLRT_DIV, 7)
	
	#Write to power management register
	bus.write_byte_data(Device_Address, PWR_MGMT_1, 1)
	
	#Write to Configuration register
	bus.write_byte_data(Device_Address, CONFIG, 0)
	
	#Write to Gyro configuration register
	bus.write_byte_data(Device_Address, GYRO_CONFIG, 24)
	
	#Write to interrupt enable register
	bus.write_byte_data(Device_Address, INT_ENABLE, 1)

def read_raw_data(addr):
	#Accelero and Gyro value are 16-bit
        high = bus.read_byte_data(Device_Address, addr)
        low = bus.read_byte_data(Device_Address, addr+1)
    
        #concatenate higher and lower value
        value = ((high << 8) | low)
        
        #to get signed value from mpu6050
        if(value > 32768):
                value = value - 65536
        return value


bus = smbus.SMBus(5) 	# or bus = smbus.SMBus(0) for older version boards
Device_Address = 0x68   # MPU6050 device address

MPU_Init()

print (" Reading Data of Gyroscope and Accelerometer")

while True:
	
	#Read Accelerometer raw value
	acc_x = read_raw_data(ACCEL_XOUT_H)
	acc_y = read_raw_data(ACCEL_YOUT_H)
	acc_z = read_raw_data(ACCEL_ZOUT_H)
	
	#Read Gyroscope raw value
	gyro_x = read_raw_data(GYRO_XOUT_H)
	gyro_y = read_raw_data(GYRO_YOUT_H)
	gyro_z = read_raw_data(GYRO_ZOUT_H)
	
	#Full scale range +/- 250 degree/C as per sensitivity scale factor
	Ax = acc_x/16384.0
	Ay = acc_y/16384.0
	Az = acc_z/16384.0
	
	Gx = gyro_x/131.0
	Gy = gyro_y/131.0
	Gz = gyro_z/131.0
	

	print ("Gx=%.2f" %Gx, u'\u00b0'+ "/s", "\tGy=%.2f" %Gy, u'\u00b0'+ "/s", "\tGz=%.2f" %Gz, u'\u00b0'+ "/s", "\tAx=%.2f g" %Ax, "\tAy=%.2f g" %Ay, "\tAz=%.2f g" %Az) 	
	sleep(1)

Code 실행 결과 

 Reading Data of Gyroscope and Accelerometer
Gx=0.00 °/s     Gy=0.00 °/s     Gz=0.00 °/s     Ax=0.00 g       Ay=0.00 g       Az=0.00 g
Gx=-0.25 °/s    Gy=-0.05 °/s    Gz=-0.04 °/s    Ax=-0.18 g      Ay=0.56 g       Az=0.72 g
Gx=-0.28 °/s    Gy=-0.10 °/s    Gz=-0.02 °/s    Ax=-0.17 g      Ay=0.56 g       Az=0.74 g
Gx=21.01 °/s    Gy=-46.73 °/s   Gz=-66.13 °/s   Ax=-0.60 g      Ay=0.53 g       Az=1.98 g
Gx=-1.12 °/s    Gy=0.08 °/s     Gz=-2.44 °/s    Ax=0.91 g       Ay=0.25 g       Az=-0.42 g
Gx=-20.89 °/s   Gy=22.92 °/s    Gz=-12.68 °/s   Ax=0.57 g       Ay=0.91 g       Az=-0.08 g
Gx=-8.25 °/s    Gy=6.10 °/s     Gz=-2.79 °/s    Ax=-0.14 g      Ay=-0.28 g      Az=0.79 g
Gx=0.19 °/s     Gy=-1.33 °/s    Gz=0.41 °/s     Ax=-0.27 g      Ay=-0.19 g      Az=0.89 g
Gx=-1.12 °/s    Gy=0.74 °/s     Gz=-1.82 °/s    Ax=0.01 g       Ay=-0.03 g      Az=0.93 g
Gx=-16.98 °/s   Gy=-8.69 °/s    Gz=-0.35 °/s    Ax=0.53 g       Ay=0.11 g       Az=0.41 g
Gx=-0.86 °/s    Gy=-3.69 °/s    Gz=-3.56 °/s    Ax=0.41 g       Ay=-0.85 g      Az=1.86 g
Gx=8.50 °/s     Gy=-13.91 °/s   Gz=-2.17 °/s    Ax=1.00 g       Ay=0.22 g       Az=-0.11 g
Gx=1.95 °/s     Gy=-15.69 °/s   Gz=-6.44 °/s    Ax=0.88 g       Ay=0.49 g       Az=0.22 g
Gx=-0.90 °/s    Gy=-19.22 °/s   Gz=4.11 °/s     Ax=0.79 g       Ay=0.20 g       Az=0.20 g
Gx=2.63 °/s     Gy=-0.53 °/s    Gz=3.50 °/s     Ax=0.57 g       Ay=0.22 g       Az=0.47 g
Gx=7.98 °/s     Gy=-5.44 °/s    Gz=-4.53 °/s    Ax=0.16 g       Ay=-0.44 g      Az=1.19 g
Gx=-1.49 °/s    Gy=2.40 °/s     Gz=-1.51 °/s    Ax=0.50 g       Ay=-0.40 g      Az=0.69 g
Gx=9.06 °/s     Gy=-0.34 °/s    Gz=11.00 °/s    Ax=-0.20 g      Ay=-0.04 g      Az=0.61 g
Gx=8.08 °/s     Gy=-0.40 °/s    Gz=-2.18 °/s    Ax=-0.12 g      Ay=0.08 g       Az=0.93 g
Gx=-0.26 °/s    Gy=-0.06 °/s    Gz=-0.07 °/s    Ax=-0.04 g      Ay=0.12 g       Az=0.94 g
Gx=-0.23 °/s    Gy=-0.02 °/s    Gz=-0.08 °/s    Ax=-0.04 g      Ay=0.12 g       Az=0.94 g
Gx=-0.25 °/s    Gy=-0.08 °/s    Gz=-0.09 °/s    Ax=-0.06 g      Ay=0.15 g       Az=0.93 g
Gx=-0.23 °/s    Gy=-0.05 °/s    Gz=-0.03 °/s    Ax=-0.06 g      Ay=0.17 g       Az=0.93 g
Gx=-0.29 °/s    Gy=-0.06 °/s    Gz=-0.05 °/s    Ax=-0.07 g      Ay=0.15 g       Az=0.92 g
Gx=-0.40 °/s    Gy=0.06 °/s     Gz=-0.11 °/s    Ax=-0.07 g      Ay=0.16 g       Az=0.94 g
Gx=-0.28 °/s    Gy=-0.04 °/s    Gz=-0.08 °/s    Ax=-0.08 g      Ay=0.17 g       Az=0.93 g
Gx=-0.25 °/s    Gy=-0.07 °/s    Gz=-0.04 °/s    Ax=-0.06 g      Ay=0.14 g       Az=0.94 g
Gx=-0.27 °/s    Gy=-0.05 °/s    Gz=-0.02 °/s    Ax=-0.06 g      Ay=0.16 g       Az=0.93 g
Gx=6.27 °/s     Gy=8.89 °/s     Gz=2.79 °/s     Ax=0.06 g       Ay=-0.07 g      Az=0.90 g
Gx=4.08 °/s     Gy=36.98 °/s    Gz=-14.33 °/s   Ax=0.28 g       Ay=0.08 g       Az=0.66 g
Gx=-2.27 °/s    Gy=-2.36 °/s    Gz=-1.52 °/s    Ax=-0.13 g      Ay=0.01 g       Az=0.95 g
Gx=0.41 °/s     Gy=-0.18 °/s    Gz=-0.15 °/s    Ax=-0.09 g      Ay=0.30 g       Az=0.89 g
^CTraceback (most recent call last):
  File "/root/o/2.py", line 82, in <module>
    sleep(1)

 

 

 

원본 영상 : youtu.be/AwRrOxVjAWE 

윗 영상의 코드를 직접 따라 해 봤습니다.  아무래도 원본에 에러가 있는 듯 한데 직접 고쳤습니다.

윗 영상은 저처럼 파이션이 낯선 사람들이 공부용으로는 좋은데 로봇 이미지와 코드는 무료가 아닙니다.

이건 제가 직접 만든 로봇 이미지와 입력한 코드입니다. (Zip 화일로 올려놓았습니다)

설명을 들으면서 치다보니 pygame에 익숙해 지는 느낌이라 오히려 좋았습니다.

following_robot.zip
0.08MB

 

# File name : difdrive.py
# Link : https://www.youtube.com/watch?v=zHboXMY45YU
# Download Car image & rename to DDR.png : https://imgur.com/SpeVm6L 
# x1 = v*cos(theta)
# y1 = v*sin(theta)
# Theta1 = diff(v) / W

import pygame
import math

class Envir:
   def __init__(self, dimensions):
      # colours
      self.black = (0, 0, 0)
      self.white = (255, 255, 255)
      self.green = (0, 255, 0)
      self.blue  = (0, 0, 255)
      self.red   = (255, 0, 0)
      self.yel   = (70, 70, 70)
      # map dimensions
      self.height = dimensions[0]
      self.width  = dimensions[1]
      # window settings
      pygame.display.set_caption("Differential drive robot")
      self.map = pygame.display.set_mode((self.width, self.height))
      # text variables
      self.font = pygame.font.Font('freesansbold.ttf', 50)
      self.text = self.font.render('default', True, self.white, self.black)
      self.textRect = self.text.get_rect()
      self.textRect.center = (dimensions[1] - 600,
                              dimensions[0] - 100)
      #trail
      self.trail_set=[]                        
                              
   def write_info(self, Vl, Vr, theta):
      txt = f"Vl = {Vl} Vr = {Vr}  theta = {int(math.degrees(theta))}"
      self.text = self.font.render(txt, True, self.white, self.black)
      self.map.blit(self.text, self.textRect)
      
   def trail(self, pos):
      for i in range(0, len(self.trail_set)-1):
         pygame.draw.line(self.map, self.yel, 
            (self.trail_set[i][0], self.trail_set[i][1]),
            (self.trail_set[i+1][0], self.trail_set[i+1][1]))
      if self.trail_set.__sizeof__() > 10000:
         self.trail_set.pop(0)
      self.trail_set.append(pos)   
      
   def robot_frame(self, pos, rotation):
      n = 80
      
      centerx, centery = pos
      x_axis = (centerx + n * math.cos(-rotation), centery + n * math.sin(-rotation))
      y_axis = (centerx + n * math.cos(-rotation + math.pi/2), 
                centery + n * math.sin(-rotation + math.pi/2))
      pygame.draw.line(self.map, self.red, (centerx, centery), x_axis, 3)
      pygame.draw.line(self.map, self.green, (centerx, centery), y_axis, 3)      
                 
class Robot:
   def __init__(self, startpos, robotImg, width):
      self.m2p = 3779.52  # meters to pixels ratio
      # robot dimensions
      self.w = width
      self.x = startpos[0]
      self.y = startpos[1]
      self.theta = 0
      self.vl = 0.01 * self.m2p  # meters / second
      self.vr = 0.01 * self.m2p  # meters / second
      self.maxspeed = 0.02 * self.m2p
      self.minspeed = -0.02 * self.m2p
      # graphics
      self.img = pygame.image.load(robotImg)
      self.rotated = self.img
      self.rect=self.rotated.get_rect(center=(self.x, self.y))
      
   def draw(self, map):
      map.blit(self.rotated, self.rect)   
      
   def move(self, event=None):
      if event is not None:
         if event.type == pygame.KEYDOWN:
            if event.key == pygame.K_KP4:  # Left Arrow in Numpad     
               self.vl += 0.001 * self.m2p
            elif event.key == pygame.K_KP1:  # 1  
               self.vl -= 0.001 * self.m2p    
            elif event.key == pygame.K_KP6:  # Right Arrow in Numpad  
               self.vr += 0.001 * self.m2p
            elif event.key == pygame.K_KP3:  # 3  
               self.vr -= 0.001 * self.m2p
               
      # v=(Vr+Vl)/2                  
      self.x += ((self.vl + self.vr) / 2) * math.cos(self.theta) * dt   
      self.y -= ((self.vl + self.vr) / 2) * math.sin(self.theta) * dt
      self.theta += (self.vr - self.vl) / self.w * dt
      # reset theta
      if self.theta > 2 * math.pi or self.theta < -2 * math.pi :
         self.theta = 0
      # set max speed
      self.vr = min(self.vr, self.maxspeed)
      self.vl = min(self.vl, self.maxspeed)
      # set min speed      
      self.vr = max(self.vr, self.minspeed)
      self.vl = max(self.vl, self.minspeed)
      
      self.rotated = pygame.transform.rotozoom(self.img,
         math.degrees(self.theta), 1)         
      self.rect = self.rotated.get_rect(center=(self.x, self.y))
      
         
      
# initialization
pygame.init()

# start postion
start = (200, 200)

# dimension
dims=(600, 1200)

# running or not
running = True

# the envir
environment = Envir(dims)

# the Robot (begining location, image of robot, width)
robot = Robot(start, "./DDR.png", 0.01 * 3779.52)

# dt (Change in time)
dt = 0
lasttime = pygame.time.get_ticks()

# simulation loop
while running:
   for event in pygame.event.get():
      if event.type == pygame.QUIT:
         running = False
      robot.move(event)
       
   dt = (pygame.time.get_ticks()-lasttime) / 1000     
   lasttime = pygame.time.get_ticks()
   pygame.display.update()
   environment.map.fill(environment.black)
   robot.move()
   environment.write_info(int(robot.vl),
                          int(robot.vr),
                          robot.theta)
   robot.draw(environment.map)          
   environment.trail((robot.x, robot.y))             
   environment.robot_frame((robot.x, robot.y), robot.theta)
                              
   #if pygame.mouse.get_focused():
      #sensorOn = True

(나중에 추가) 아래 코드는 원작자도 에라가 있는 걸 못 고친 듯 합니다.   알고보니 원본 데모 영상에도 똑같은 에러가 있더군요.

별로 가치가 없는 내용이었습니다.

===============================================

알고보틱의 https://www.youtube.com/watch?v=ZxaXfahaP2s 비디오 코드인데 작가의 코드와 똑같지 않은듯 합니다.

약간 결과가 다르게 나오더군요.   

총 5편의 비디오 강의의 결과물인데 강의 영상과는 결과가 다르게 부실하게 나왔습니다.

알고보틱은 예전에는 코드를 판매했는데 살만한 가치까지는 없어보여서 그냥 웹에 뒤지니 대충 나왔습니다.

요즘에는 판매하는 account도 없애버린 것 같더군요.   

 

 

원본 이미지와 초벌 실험.

 

이제 에라가 어디인지 감이 좀 잡힙니다.&nbsp; 폭이 좁은 곳들에서만 집중적으로 에러가 나는군요.

 

env.py

import math
import pygame

class buildEnvironment:
    def __init__(self, MapDimensions):
        pygame.init()
        self.pointCloud = []
        self.externalMap = pygame.image.load('floorplan.png')
        self.maph, self.mapw = MapDimensions
        self.MapWindowName = 'RRT path planning'
        pygame.display.set_caption(self.MapWindowName)
        self.map = pygame.display.set_mode((self.mapw,self.maph))
        self.map.blit(self.externalMap,(0,0))
        #Colours
        self.black = (0, 0, 0)
        self.grey = (70, 70, 70)
        self.Blue = (0, 0, 255)
        self.Green = (0, 255, 0)
        self.Red = (255, 0, 0)
        self.white = (255, 255, 255)


    def AD2pos(self, distance, angle, robotPosition):
        x = distance * math.cos(angle) + robotPosition[0]
        y = -distance * math.sin(angle) + robotPosition[1]
        return (int(x), int(y))

    def dataStorage(self, data):
        print(len(self.pointCloud))
        for element in data:
            point = self.AD2pos(element[0], element[1], element[2])
            if point not in self.pointCloud:
                self.pointCloud.append(point)

    def show_sensorData(self):
        self.infomap = self.map.copy()
        for point in self.pointCloud:
            self.infomap.set_at((int(point[0]), int(point[1])), (255, 0, 0))

 

sensors.py

import math
import pygame
import numpy as np

def uncertaninty_add(distance, angle, sigma):
    mean = np.array([distance, angle])
    covariance = np.diag(sigma**2)
    distance, angle = np.random.multivariate_normal(mean, covariance)
    distance = max(distance, 0)
    angle = max(angle, 0)
    return [distance, angle]


class LaserSensor:
    def __init__(self, Range, map, uncertainty):
        self.Range = Range
        self.speed = 3 #rounds per second
        self.sigma = np.array([uncertainty[0], uncertainty[1]])
        self.position = (0,0)
        self.map = map
        self.W, self.H = pygame.display.get_surface().get_size()
        self.sensedObstacles = []

    def distance(self, obsatclePosition):
        px = (obsatclePosition[0] - self.position[0])**2
        py = (obsatclePosition[1] - self.position[1])**2
        return math.sqrt(px + py)

    def sense_obstacles(self):
        data = []
        x1, y1 = self.position[0], self.position[1]
        for angle in np.linspace(0, 2*math.pi, 180, False):
            x2, y2 = (x1 + self.Range * math.cos(angle), y1 - self.Range * math.sin(angle))
            for i in range(0,100):
                u = i / 100
                x = int(x2*u + x1*(1-u))
                y = int(y2*u + y1*(1-u))
                if 0 < x < self.W and 0 < y < self.H:
                    color = self.map.get_at((x,y))
                    if (color[0], color[1], color[2]) == (0,0,0):
                        distance = self.distance((x,y))
                        output = uncertaninty_add(distance, angle, self.sigma)
                        output.append(self.position)
                        # store the mesurement
                        data.append(output)
                        break
        if len(data) > 0:
            return data
        else:
            return False

 

 

 

Features.py

# Features.py

import numpy as np
import math
from fractions import Fraction
from scipy.odr import *

# landmarks
Landmarks = []

class featuresDetection:
   def __init__(self):
      # variables
      self.EPSILON = 10
      self.DELTA = 10
      self.SNUM = 6
      self.PMIN = 20
      self.GMAX = 20
      self.SEED_SEGMENTS = []
      self.LINE_SEGMENTS = []
      self.LASERPOINTS = []
      self.LINE_PARAMS = None
      self.NP = len(self.LASERPOINTS) - 1
      self.LMIN = 5 # minimum length of a line segment
      self.LR = 0 # real length of a line segment
      self.PR = 0 # the number of laser points contained
      self.FEATURES = []

   # euclidian distance from point1 to point2
   def dist_point2point(self, point1, point2):
   #def dist_point2point(point1, point2):
      Px = (point1[0] - point2[0]) ** 2
      Py = (point1[1] - point2[1]) ** 2
      return math.sqrt(Px + Py)
      
   # distance point to line written in general form
   def dist_point2line(self, params, point):
      A, B, C = params
      distance = abs(A * point[0] + B * point[1] + C) / math.sqrt(A ** 2 + B ** 2)
      return distance
      
   # extract two points from a line equation under the slope intercepts form
   def line_2points(self, m, b):
      x = 5
      y = m * x + b
      x2 = 2000
      y2 = m * x2 + b
      return [(x, y), (x2, y2)]
      
   # general form to slope-intercept
   def lineForm_G2SI(self, A, B, C):
      m = -A / B
      B = -C / B
      return m, B
      
   # slope-intercept to general form
   def lineForm_Si2G(self, m, B):
      A, B, C = -m, 1, -B
      if A < 0:
         A, B, C = -A, -B, -C
      den_a = Fraction(A).limit_denominator(1000).as_integer_ratio()[1]   
      den_c = Fraction(C).limit_denominator(1000).as_integer_ratio()[1]
   
      gcd = np.gcd(den_a, den_c)
      lcm = den_a * den_c / gcd
      
      A = A * lcm
      B = B * lcm
      C = C * lcm
      return A, B, C
      
   def line_intersect_general(self, params1, params2):
      a1, b1, c1 = params1
      a2, b2, c2 = params2
      if (b1 * a2 - a1 * b2) != 0:
         x = (c1 * b2 - b1 * c2) / (b1 * a2 - a1 * b2)
         y = (a1 * c2 - a2 * c1) / (b1 * a2 - a1 * b2)
      return x, y
      
   def points_2line(self, point1, point2):
      m, b = 0, 0
      if point2[0] == point1[0]:
         pass
      else:
         m = (point2[1] - point1[1]) / (point2[0] - point1[0])
         b = point2[1] - m * point2[0]
      return m, b

   def projection_point2line(self, point, m, b):
      x, y = point
      m2 = -1 / m
      c2 = y - m2 * x
      
      intersection_x = - (b - c2) / (m - m2)
      intersection_y = m2 * intersection_x + c2
      return intersection_x, intersection_y      
      
   def AD2pos(self, distance, angle, robot_position):
      x = distance * math.cos(angle) + robot_position[0]
      y = -distance * math.sin(angle) + robot_position[1]
      return (int(x), int(y))
      
   def laser_points_set(self, data):
      self.LASERPOINTS = []   
      if not data:
         pass
      else:
         for point in data:
            coordinates = self.AD2pos(point[0], point[1], point[2])
            self.LASERPOINTS.append([coordinates, point[1]])
      self.NP = len(self.LASERPOINTS) - 1
   
   # Define a function (quadratic in our case) to fit the data with.
   def linear_func(self, p, x):
      m, b = p
      return m * x + b
      
   def odr_fit(self, laser_points):
      x = np.array([i[0][0] for i in laser_points])
      y = np.array([i[0][1] for i in laser_points])   
      
      # Create a model for fitting.
      linear_model = Model(self.linear_func)
      
      # Create a RealData object using our initiated data from above.
      data = RealData(x, y)
      
      # Set up ODR with the model and data.
      odr_model = ODR(data, linear_model, beta0=[0., 0.])
      
      # Run the regression.
      out = odr_model.run()
      m, b = out.beta
      return m, b
      
   def predictPoint(self, line_params, sensed_point, robotpos):
      m, b = self.points_2line(robotpos, sensed_point)
      params1 = self.lineForm_Si2G(m, b)
      predx, predy = self.line_intersect_general(params1, line_params)
      return predx, predy
      
   def seed_segment_detection(self, robot_position, break_point_ind):
      flag = True
      self.NP = max(0, self.NP)
      self.SEED_SEGMENTS = []
      for i in range(break_point_ind, (self.NP - self.PMIN)):
         predicted_points_to_draw = []
         j = i + self.SNUM
         m, c = self.odr_fit(self.LASERPOINTS[i:j])
         
         params = self.lineForm_Si2G(m, c)
         
         for k in range(i, j):
            predicted_point = self.predictPoint(params, self.LASERPOINTS[k][0], robot_position)
            predicted_points_to_draw.append(predicted_point)
            d1 = self.dist_point2point(predicted_point, self.LASERPOINTS[k][0])
            
            if d1 > self.DELTA:
               flag = False
               break
            d2 = self.dist_point2line(params, predicted_point)
            
            if d2 > self.EPSILON:
               flag = False
               break
         if flag:
            self.LINE_PARAMS = params
            return [self.LASERPOINTS[i:j], predicted_points_to_draw, (i, j)]
            
      return False
   
   def seed_segment_growing(self, indices, break_point):
      line_eq = self.LINE_PARAMS
      i, j = indices
      # Beginning and Final points in the line segment
      PB, PF = max(break_point, i - 1), min(j + 1, len(self.LASERPOINTS) - 1)
      
      while self.dist_point2line(line_eq, self.LASERPOINTS[PF][0]) < self.EPSILON: 
         if PF > self.NP - 1:
            break
         else:
            m, b = self.odr_fit(self.LASERPOINTS[PB:PF])
            line_eq = self.lineForm_Si2G(m, b)
            
            POINT = self.LASERPOINTS[PF][0]
          
         PF = PF + 1
         NEXTPOINT = self.LASERPOINTS[PF][0]
         if self.dist_point2point(POINT, NEXTPOINT) > self.GMAX:
            break
            
      PF = PF - 1
      
      while self.dist_point2line(line_eq, self.LASERPOINTS[PB][0]) < self.EPSILON:
         if PB < break_point:
            break
         else:
            m, b = self.odr_fit(self.LASERPOINTS[PB:PF])
            line_eq = self.lineForm_Si2G(m, b)
            POINT = self.LASERPOINTS[PB][0]
            
         PB = PB - 1
         NEXTPOINT = self.LASERPOINTS[PB][0]
         if self.dist_point2point(POINT, NEXTPOINT) > self.GMAX:
            break
      PB = PB + 1
      
      LR = self.dist_point2point(self.LASERPOINTS[PB][0], self.LASERPOINTS[PF][0])
      PR = len(self.LASERPOINTS[PB:PF])
      
      if (LR >= self.LMIN) and (PR >= self.PMIN):
         self.LINE_PARAMS = line_eq
         m, b = self.lineForm_G2SI(line_eq[0], line_eq[1], line_eq[2])
         self.two_points = self.line_2points(m, b)
         self.LINE_SEGMENTS.append((self.LASERPOINTS[PB + 1][0], self.LASERPOINTS[PF - 1][0]))
         return [self.LASERPOINTS[PB:PF], self.two_points,
         (self.LASERPOINTS[PB + 1][0], self.LASERPOINTS[PF - 1][0]), PF, line_eq, (m, b)]
      else:
         return False
         
   def lineFeats2point(self):
      new_rep = [] # the new representation of the features
      
      for feature in self.FEATURES:
         projection = self.projection_point2line((0,0), feature[0][0], feature[0][1])
         new_rep.append([feature[0], feature[1], projection])
         
      return new_rep
         
def landmark_association(landmarks):
   thresh = 10   # 10 was default
   for l in landmarks:
   
      flag = False
      for i, Landmark in enumerate(Landmarks):
         dist = featuresDetection.dist_point2point(l[2], Landmark[2])
         if dist < thresh:
            if not is_overlap(l[1], Landmark[1]):
               continue
            else:
               Landmarks.pop(i)   
               Landmarks.insert(i, l)
               flag = True      
               
               break
         if not flag:
            Landmarks.append(l)
            
def is_overlap(seg1, seg2):
   length1 = featuresDetection.dist_point2point(seg1[0], seg1[1])
   length2 = featuresDetection.dist_point2point(seg2[0], seg2[1])               
   center1 = ((seg1[0][0] + seg1[1][0]) / 2, (seg1[0][1] + seg1[1][1]) / 2)
   center2 = ((seg2[0][0] + seg2[1][0]) / 2, (seg2[0][1] + seg2[1][1]) / 2)
   dist = featuresDetection.dist_point2point(center1, center2)
   if dist > (length1 + length2) / 2:
      return False
   else:
      return True

 

main.py

# Main for Feature Extraction from 2D LIDAR
#import SLAM_YTB import env, sensors, Features
import env, sensors, Features
import random
import pygame

def random_color():
   levels = range(32,256,32)
   return tuple(random.choice(levels) for _ in range(3))
FeatureMAP=Features.featuresDetection()   
environment = env.buildEnvironment((600,1200))
originalMap = environment.map.copy()
laser = sensors.LaserSensor(200, originalMap, uncertainty=(0.5, 0.01))
environment.map.fill((255,255,255))
environment.infomap = environment.map.copy()
originalMap = environment.map.copy()
running = True
FEATURE_DETECTION=True
BREAK_POINT_IND = 0

while running :
   #environment.infomap = originalMap.copy()
   FEATURE_DETECTION = True
   BREAK_POINT_IND = 0
   ENDPOINTS=[0,0]
   sensorOn = False
   PREDICTED_POINTS_TODRAW=[]
      
   for envent in pygame.event.get():
      if envent.type == pygame.QUIT:
         running = False
   if pygame.mouse.get_focused():
      sensorOn = True
   elif not pygame.mouse.get_focused():
      sensorOn = False        
   if sensorOn: 
      position = pygame.mouse.get_pos()
      laser.position = position
      sensor_data = laser.sense_obstacles()
      FeatureMAP.laser_points_set(sensor_data)
      while BREAK_POINT_IND < (FeatureMAP.NP - FeatureMAP.PMIN):
         seedSeg = FeatureMAP.seed_segment_detection(laser.position,BREAK_POINT_IND)
         if seedSeg == False:
            break
         else:
            seedSegment = seedSeg[0]
            PREDICTED_POINTS_TODRAW = seedSeg[1]
            INDICES = seedSeg[2] 
            results = FeatureMAP.seed_segment_growing(INDICES, BREAK_POINT_IND)
            if results == False:
               BREAK_POINT_IND = INDICES[1]
               continue
            else:
               line_eq = results[1]
               m, c = results[5]
               line_seg = results[0]
               OUTERMOST = results[2]
               BREAK_POINT_IND = results[3]
               
               ENDPOINTS[0] = FeatureMAP.projection_point2line(OUTERMOST[0], m, c)
               ENDPOINTS[1] = FeatureMAP.projection_point2line(OUTERMOST[1], m, c)
               FeatureMAP.FEATURES.append([[m, c], ENDPOINTS])
               
               COLOR = random_color()
               for point in line_seg:
                  #environment.infomap.set_at((int(point[0][0]), int(point[0][1])), (0, 255, 0))
                  pygame.draw.circle(environment.infomap, COLOR, (int(point[0][0]), int(point[0][1])), 2, 0)
               #pygame.draw.line(environment.infomap, (255, 0, 0), ENDPOINTS[0], ENDPOINTS[1], 2)

               pygame.draw.line(environment.infomap, (0, 255, 100), ENDPOINTS[0], ENDPOINTS[1], 1)
               environment.dataStorage(sensor_data)
               
               FeatureMAP.FEATURES=FeatureMAP.lineFeats2point()
               Features.landmark_association(FeatureMAP.FEATURES)
      for landmark in Features.Landmarks:
         pygame.draw.line(environment.infomap, (100, 100, 155), landmark[1][0], landmark[1][1], 4)
               
   environment.map.blit(environment.infomap, (0, 0))
   pygame.display.update()

 

 

원본을 다운받은 곳은 초기 영상분이었습니다.   이 곳에 Map 화일들이 있습니다.  https://github.com/kabbel/SLAM

 

GitHub - kabbel/SLAM: SLAM simulation - code heavily inspired from a YouTube video by Algobotics

SLAM simulation - code heavily inspired from a YouTube video by Algobotics - GitHub - kabbel/SLAM: SLAM simulation - code heavily inspired from a YouTube video by Algobotics

github.com

 

+ Recent posts